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Abstract. We consider the massless two-loop two-point function with arbitrary powers of the propagators
and derive a representation from which we can obtain the Laurent expansion to any desired order in the
dimensional regularization parameter ε. As a side product, we show that in the Laurent expansion of the
two-loop integral only rational numbers and multiple zeta values occur. Our method of calculation obtains
the two-loop integral as a convolution product of two primitive one-loop integrals. We comment on the
generalization of this product structure to higher loop integrals.

1 Introduction

Quantitative predictions from perturbation theory are cru-
cially linked with our ability to calculate loop integrals.
An object of extensive study has been the master two-
loop two-point function, with massless internal propaga-
tors but arbitrary powers of the propagators. The name
“master two-loop two-point function” is justified, since all
other two-loop two-point topologies can be obtained from
this one. Allowing arbitrary powers of the propagators is
important for three- or four-loop calculations, where the
integration over self-energy insertions into the propaga-
tors shifts the power of the propagator from unity to 1+ε.
(As usual we work within dimensional regularization with
D = 4 − 2ε.)

In this paper we consider the massless two-loop two-
point function. This integral is not only of practical impor-
tance from a phenomenological perspective, but received
also quite some interest from number theorists. As far as
the phenomenological side is concerned, this integral is
implemented into the Mincer package [1, 2] and used for
example for the calculation of the total hadronic cross-
section in electron–positron annihilation. From the num-
ber theoretical perspective there has always been the open
question which types of (transcendental) numbers appear
in the ε-expansion of this integral. From explicit calcula-
tions it is known that in the lowest orders multiple zeta
values occur.

The history for the calculation of this integral dates
back, to the best of our knowledge, to 1980, when the ε0-
coefficient for a specific (non-trivial) combination of powers
of propagators was calculated using the Gegenbauer poly-
nomial x-space technique [3]. In 1984 Kazakov obtained for
all powers of the propagators of the form νj = 1 + ajε the
result up to ε3; a year later the ε4-term followed [4–6]. The
momentum of pushing the ε-expansion of this integral fur-

ther was then taken up by Broadhurst and collaborators: In
1986 the ε5-term was calculated, and in 1988 followed the
ε6-term [7, 8]. In the mean time the original Gegenbauer
technique had been refined [9] and a representation of the
integral for a specific combination of powers of propaga-
tors in terms of hypergeometric 3F2-functions with unit
arguments was found [9, 10]. The year 1996 brought an
advance of two further terms in the expansion (ε7 and
ε8) [10]. Finally, last year the ε9-term was announced [11].
The calculation of most of these terms relied on symmetry
properties of the two-loop integral. It is known that this
two-loop integral has the symmetry group Z2×S6 [7,8,12],
which is of order 1440, e.g. there are 1440 symmetry re-
lations. The calculations cited above exploited the fact
that the symmetry properties allow one to reconstruct the
result of the expansion up to order ε9 for powers of the
propagators of the form νj = 1 + ajε from the result of
the expansion, where two adjacent propagators occur with
unit power. However, it is known that beyond this order
the symmetry relations are not sufficient to determine the
solution [10]. In view of the last point, the calculation of
this two-loop integral cannot be considered to be solved
to a satisfactory level. We quote from the latest publica-
tion of Broadhurst [11]: “It is one of the many scandals of
our limited understanding of the analytical content of per-
turbative quantum field theory that, despite many years
of intense effort, we still do not know whether multiple
zeta values suffice for even the Taylor expansion of the
two-loop integral.”

In this paper we proof the theorem that multiple zeta
values are sufficient. This is one of the main results of
this paper and it solves a long standing open problem. We
also show how to obtain the ε-expansion to arbitrary order
for arbitrary powers of the propagators by calculating this
integral with the help of a new method. For an introduction
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to calculational techniques for multi-loop integrals we refer
to [13–15].

The second important result of this paper is the method
we employed for the calculation of the two-loop integral:
We obtain the two-loop integral as a convolution product
of two primitive one-loop integrals. The convolution prod-
uct can be evaluated in terms of nested sums [16,17], and
the ε-expansion of the original integral is obtained from the
ε-expansion of these sums. Generalizations of this product
structure can be useful for the extension of existing pack-
ages for two-point functions (like Mincer [1, 2]) to four
loops. In this paper we only briefly comment on this pos-
sibility and focus on the two-loop two-point function. In
view of later applications for the calculations of higher or-
ders we show that our method for the calculation can be
implemented efficiently on a computer.

This paper is organized as follows: In Sect. 2 we define
the two-loop integral and summarize known facts about
this integral. In Sect. 3 we show that the two-loop integral
can be written as a convolution product of two one-loop
integrals. We also discuss the factorization for three-loop
two-point functions. In Sect. 4 we use this product struc-
ture to obtain the ε-expansion for the two-loop integral.
In Sect. 5 we report on the implementation of our formu-
lae into a symbolic computer code. Section 6 contains a
summary and our conclusions. An appendix collects some
useful formulae for integral transformations.

2 Review of known results
for the two-loop integral

The object of investigation is the following five-propagator
integral:

Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5)

= c−2
Γ

(−p2)ν12345−2m+2ε
∫

dDk1

iπD/2

∫
dDk2

iπD/2

× 1
(−k2

1)
ν1 (−k2

2)
ν2 (−k2

3)
ν3 (−k2

4)
ν4 (−k2

5)
ν5 , (1)

where k3 = k2 −p, k4 = k1 −p, k5 = k2 −k1, D = 2m−2ε
and

cΓ =
Γ (1 + ε)Γ (1 − ε)2

Γ (1 − 2ε)
. (2)

The superscripts for an integral Î(l,n) indicate the number
of loops l and the number of propagators n. The prefactor
in front of the integral is inserted for later convenience.
It ensures that Î(2,5) is independent of (−p2) and avoids
a proliferation of Euler’s constant γE. The corresponding
Feynman diagram for this two-loop integral is shown on
the LHS of Fig. 1. It is for our purpose sufficient to assume
that the exponents νj are of the form

νj = nj + ajε, (3)

where the nj are positive integers and the aj are non-
negative real numbers. The ε-dependence in the powers

of the propagators arises from higher loop integrals by
integrating out simple one-loop two-point insertions in the
propagators of (1).

Integration-by-part identities [18–20] relate integrals
with different powers of the propagators. For example,
from the triangle rule [21] we obtain the identities

[
(D − ν235 − ν5) + ν22+(1− − 5−) + ν33+(4− − 5−)

]
× Î(2,5) = 0,[
(D − ν145 − ν5) + ν11+(2− − 5−) + ν44+(3− − 5−)

]
× Î(2,5) = 0. (4)

Here, the operators i+ and i− raise, respectively lower, the
power of propagator i by one. The integration-by-part re-
lations can be used to relate the integral where all propaga-
tors occur to a positive integer power to simpler topologies,
e.g. where one propagator is eliminated.

The integral in (1) has the obvious symmetries

(ν1, ν2, ν3, ν4) → (ν2, ν1, ν4, ν3) ,

(ν1, ν2, ν3, ν4) → (ν4, ν3, ν2, ν1) . (5)

However, there are more symmetries, which relate the in-
tegral to itself, up to prefactors of products of Gamma
functions. To discuss the symmetry properties of (1) it is
convenient to introduce the function F (ν0, ν1, ν2, ν3, ν4, ν5)
related to Î(2,5) by

Î(2,5)(ν0, ν1, ν2, ν3, ν4, ν5)

=
Γ (2ν0 − 3)2

(2ν0 − 3)Γ (3 − ν0)2Γ (ν0 − 1)6
(6)

×

 10∏

j=1

Γ (ν0 − νj)
Γ (νj)




1/2

F (ν0, ν1, ν2, ν3, ν4, ν5),

where

ν6 = 3ν0 − ν12345 (7)

and

ν7 = 2ν0 − ν235, ν9 = ν345 − ν0,

ν8 = 2ν0 − ν145, ν(10) = ν125 − ν0. (8)

Here and in the following we will use the short-hand nota-
tion like νijk = νi + νj + νk to denote sums of indices
if {i, j, k} ∈ {1, 2, 3, 4, 5}. The function F (ν0, ν1, ν2, ν3,
ν4, ν5) is invariant under the symmetry group Z2 × S6 [8].
The symmetric group S6 is generated by the six-cycle

(ν0, ν1, ν2, ν3, ν4, ν5) → (ν0, ν2, ν5, ν4, 3ν0 − ν12345, ν3) (9)

and the transposition

(ν0, ν1, ν2, ν3, ν4, ν5)

→ (ν0,−ν0 + ν145, ν2,−ν0 + ν345, ν0 − ν5, ν0 − ν4) . (10)
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Fig. 1. Factorization in terms of diagrams: The two-loop two-point function on the LHS is equal to the insertion of a one-loop
three-point function into a one-loop two-point function. The insertion occurs at the shaded vertex

The group Z2 is generated by the reflection

(ν0, ν1, ν2, ν3, ν4, ν5)

→ (ν0, ν0 − ν1, ν0 − ν2, ν0 − ν3, ν0 − ν4, ν0 − ν5) . (11)

Note that in general the generators of the symmetry group
do not conserve the positivity aj ≥ 0 in the parameteriza-
tion of (3).

3 The product structure
of the two-loop integral

In this section we show that the two-loop integral in (1)
can be written as a (convolution) product of two one-loop
integrals. To this aim we define the following two one-loop
integrals:

Î(1,2)(m − ε, ν1, ν4)

= c−1
Γ

(−p2)ν14−m+ε
∫

dDk1

iπD/2

1
(−k2

1)
ν1 (−k2

4)
ν4 ,

I(1,3)(m − ε, ν2, ν3, ν5; x, y) (12)

= c−1
Γ

(−p2)ν235−m+ε
∫

dDk2

iπD/2

1
(−k2

2)
ν2 (−k2

3)
ν3 (−k2

5)
ν5 ,

where x = (−p2)/(−k2
1), y = (−p2)/(−k2

4). Note that the
integral I(1,3) depends on the kinematic variables −p2, −k2

1
and −k2

4 only through the dimensionless ratios x and y.
The integral Î(1,2) is easily computed to be

Î(1,2)(m − ε, ν1, ν4) (13)

= c−1
Γ

Γ (−m + ε + ν14)
Γ (ν1)Γ (ν4)

Γ (m − ε − ν1)Γ (m − ε − ν4)
Γ (2m − 2ε − ν14)

.

The one-loop triangle integral I(1,3) can be written as a
double Mellin–Barnes representation:

I(1,3)(m − ε, ν2, ν3, ν5; x, y)

=
1

(2πi)2

γ1+i∞∫
γ1−i∞

dσ

γ2+i∞∫
γ2−i∞

dτ y−σx−τ

×Î(1,3)(m − ε, ν2, ν3, ν5; τ, σ), (14)

where the function Î(1,3)(m − ε, ν2, ν3, ν5; τ, σ) is given by

Î(1,3)(m − ε, ν2, ν3, ν5; τ, σ)

= c−1
Γ

1
Γ (ν2)Γ (ν3)Γ (ν5)Γ (2m − 2ε − ν235)

×Γ (−σ)Γ (−σ + m − ε − ν35)

×Γ (−τ)Γ (−τ + m − ε − ν25) (15)

×Γ (σ + τ − m + ε + ν235)Γ (σ + τ + ν5).

The integration contours are parallel to the imaginary axis,
with indentations, if necessary, to separate the “UV”-poles
(Γ (−σ + ...), Γ (−τ + ...), Γ (−σ − τ + ...)) from the “IR”-
poles (Γ (σ + ...), Γ (τ + ...), Γ (σ + τ + ...)). It should be
noted that the function Î(1,3)(m − ε, ν2, ν3, ν5; τ, σ) is the
double Mellin transform in x and y of the original integral
I(1,3)(m − ε, ν2, ν3, ν5; x, y):

Î(1,3)(m − ε, ν2, ν3, ν5; τ, σ) (16)

=

∞∫
0

dx

∞∫
0

dy xτ−1yσ−1 I(1,3)(m − ε, ν2, ν3, ν5; x, y).

From (13) and (14) one obtains the two-loop integral

Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5)

=
1

(2πi)2

γ1+i∞∫
γ1−i∞

dσ

γ2+i∞∫
γ2−i∞

dτ

×Î(1,2)(m − ε, ν1 − τ, ν4 − σ)

×Î(1,3)(m − ε, ν2, ν3, ν5; τ, σ). (17)

In (17) the two-loop integral is obtained as a (double) con-
volution product of two one-loop integrals. This is pictori-
ally shown in Fig. 1. At the level of Feynman diagrams the
product structure is given as the insertion of a Feynman
diagram into another Feynman diagram. It is a well-known
fact that convolution products can be turned into ordinary
products by applying a suitable integral transformation. In
the case at hand, (17) factorizes by performing two inverse
Mellin transformations in ν1 and ν4. If one sets

I(1,2)(m − ε, x, y)

=
1

(2πi)2

γ3+i∞∫
γ3−i∞

dν1

γ4+i∞∫
γ4−i∞

dν4 x−ν1y−ν4
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Fig. 2. Factorization at three loops: The first
two topologies factorize into one-loop dia-
grams, whereas the last topology factorizes
into a one-loop diagram and a two-loop dia-
gram. A graph to the right side of the product
operator � is inserted into the shaded vertex
of the graph to the left of the product oper-
ator

×Î(1,2)(m − ε, ν1, ν4), (18)

I(2,5)(m − ε, ν2, ν3, ν5; x, y)

=
1

(2πi)2

γ3+i∞∫
γ3−i∞

dν1

γ4+i∞∫
γ4−i∞

dν4 x−ν1y−ν4

×Î(2,5)(m − ε, ν1, ν2, ν3, ν4, ν5),

one obtains the double inverse Mellin transform of the two-
loop integral Î(2,5) as the product of the one-loop integral
I(1,3) with the double inverse Mellin transform of the one-
loop integral Î(1,2):

I(2,5)(m − ε, ν2, ν3, ν5; x, y) (19)

= I(1,2)(m − ε, x, y) × I(1,3)(m − ε, ν2, ν3, ν5; x, y).

Equation (17) or (19) is the advertised factorization of the
two-loop integral into two one-loop integrals. At the level
of Feynman diagrams the product is similar to the in-
sertion operation defined by Kreimer within the context
of renormalization [22–24]. In the context discussed here,
insertions occur only at one specified place. This implies
that the product is associative. Note that in general an in-
sertion product, which allows insertions at several places,
is not associative. The factorization property, e.g. that
non-primitive graphs can be written as convolution prod-
ucts of primitive graphs, generalizes to higher loops. For
the three-loop two-point functions there are three basic
topologies, usually named the ladder (“LA”) topology, the
Benz (“BE”) topology and the non-planar (“NO”) topol-
ogy. They are shown on the LHS of Fig. 2. The ladder and
Benz topologies are given as convolution products of three
one-loop graphs:

Î
(3,8)
LA (m − ε, ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8)

= c−3
Γ

(−p2)ν12345678−3m+3ε

×
∫

dDk1

iπD/2

∫
dDk2

iπD/2

∫
dDk3

iπD/2

8∏
j=1

1(−k2
j

)νj

=
1

(2πi)4

γ1+i∞∫
γ1−i∞

dσ1

γ2+i∞∫
γ2−i∞

dτ1

γ3+i∞∫
γ3−i∞

dσ2

γ4+i∞∫
γ4−i∞

dτ2

×Î(1,2)(m − ε, ν1 − τ1, ν6 − σ1)

×Î(1,3)(m − ε, ν2 − τ2, ν5 − σ2, ν7; τ1, σ1)

×Î(1,3)(m − ε, ν3, ν4, ν8; τ2, σ2). (20)

The momenta are defined for the ladder topology by k4 =
k3 − p, k5 = k2 − p, k6 = k1 − p, k7 = k2 − k1 and
k8 = k3 − k2. For the Benz topology we have

Î
(3,8)
BE (m − ε, ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8)

= c−3
Γ

(−p2)ν12345678−3m+3ε
∫

dDk1

iπD/2

∫
dDk2

iπD/2

∫
dDk3

iπD/2

×
8∏

j=1

1(−k2
j

)νj

=
1

(2πi)4

γ1+i∞∫
γ1−i∞

dσ1

γ2+i∞∫
γ2−i∞

dτ1

γ3+i∞∫
γ3−i∞

dσ2

γ4+i∞∫
γ4−i∞

dτ2

×Î(1,2)(m − ε, ν1 − τ1 − τ2, ν5 − σ1) (21)

×Î(1,3)(m − ε, ν2367 − m + ε + σ2 + τ2,

ν4, ν8 − σ2; τ1, σ1)

×Î(1,3)(m − ε, ν2, ν7, ν6; τ2, σ2).

The momenta are defined for the Benz topology by k4 =
k3 − p, k5 = k1 − p, k6 = k2 − k1, k7 = k3 − k2 and
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k8 = k3 −k1. The non-planar topology factorizes only into
a one-loop two-point function and the crossed two-loop
three-point function:

Î
(3,8)
NO (m − ε, ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8)

= c−3
Γ

(−p2)ν12345678−3m+3ε
∫

dDk1

iπD/2

∫
dDk2

iπD/2

∫
dDk3

iπD/2

×
8∏

j=1

1(−k2
j

)νj
(22)

=
1

(2πi)2

γ1+i∞∫
γ1−i∞

dσ

γ2+i∞∫
γ2−i∞

dτ

×Î(1,2)(m − ε, ν1 − τ, ν6 − σ)

×Î
(2,6)
X (m − ε, ν2, ν3, ν4, ν5, ν7, ν8; τ, σ).

Here, Î
(2,6)
X is the double Mellin transform

Î
(2,6)
X (m − ε, ν2, ν3, ν4, ν5, ν7, ν8; τ, σ)

=

∞∫
0

dx

∞∫
0

dy xτ−1yσ−1

×I
(2,6)
X (m − ε, ν2, ν3, ν4, ν5, ν7, ν8; x, y) (23)

of the two-loop crossed vertex function

I
(2,6)
X (m − ε, ν2, ν3, ν4, ν5, ν7, ν8; x, y) (24)

= c−2
Γ

(−p2)ν234578−2m+2ε
∫

dDk2

iπD/2

∫
dDk3

iπD/2

× 1
(−k2

2)
ν2 (−k2

3)
ν3 (−k2

4)
ν4 (−k2

5)
ν5 (−k2

7)
ν7 (−k2

8)
ν8 .

The momenta for (22) and (24) are defined by k4 = k3 −p,
k5 = k1 − k2 + k3 − p, k6 = k1 − p, k7 = k2 − k1 and
k8 = k3 − k2. The variables x and y are defined by x =
(−p2)/(−k2

1) and y = (−p2)/(−k2
6). For all topologies the

factorization is shown pictorially in Fig. 2.

4 Evaluation of the two-loop integral

Equation (17) is the starting point for the further evalua-
tion of the two-loop integral:

Î(2,5) = c
1

(2πi)2

γ1+i∞∫
γ1−i∞

dσ

γ2+i∞∫
γ2−i∞

dτ

×Γ (−σ)Γ (−σ + m − ε − ν35)Γ (σ + m − ε − ν4)
Γ (−σ + ν4)

×Γ (−τ)Γ (−τ + m − ε − ν25)Γ (τ + m − ε − ν1)
Γ (−τ + ν1)

×Γ (−σ − τ − m + ε + ν14)Γ (σ + τ − m + ε + ν235)
Γ (σ + τ + 2m − 2ε − ν14)

×Γ (σ + τ + ν5), (25)

with

c =
c−2
Γ

Γ (ν2)Γ (ν3)Γ (ν5)Γ (2m − 2ε − ν235)
. (26)

The strategy for the evaluation is as follows: We first close
the contours and evaluate the integrals with the help of
the residue theorem. This technique has a long history; a
recent example is the calculation of the triple box [25]. The
semi-circles at infinity needed to close the contours give a
vanishing contribution provided that

ν1 + ν125 − 2m + 2ε < 1,

ν4 + ν345 − 2m + 2ε < 1,

−1 < (ν1 + ν125 − 2m + 2ε) (27)

+ (ν4 + ν345 − 2m + 2ε) .

From the residues we immediately obtain nested sums.
All these sums can be brought to a standard form and
then expanded into a Laurent series in ε with the help
of the algorithms described in [16]. We use the program
“nestedsums” [17] and the “GiNaC”-library [26] for this
purpose. The algorithms A and B of [16] are generalizations
of algorithms for the manipulations of harmonic sums and
harmonic polylogarithms, described in [27–29].

Closing the contour of the σ-integration to the right,
one picks up the residues of Γ (−σ), Γ (−σ+m−ε−ν35) and
Γ (−σ − τ − m + ε + ν14). All other σ-dependent Gamma
functions in the numerator have poles to the left of the
contour and therefore do not contribute. The basic formula
for the residue of Euler’s Gamma function reads

res (Γ (−x + a), x = a + n) = − (−1)n

n!
. (28)

The two-loop integral can therefore be written as a sum
of three terms,

Î(2,5) = T(1) + T(2) + T(3), (29)

where each term is obtained by taking the residues of one
Gamma function from the set Γ (−σ), Γ (−σ+m−ε−ν35)
and Γ (−σ − τ − m + ε + ν14). Explicitly,

T(k) = c

∞∑
n=0

(−1)n

n!
1

2πi

γ2+i∞∫
γ2−i∞

dτ (30)

×Γ (−τ)Γ (−τ + m − ε − ν25)Γ (τ + m − ε − ν1)
Γ (−τ + ν1)

H(k),

with

H(1) =
Γ (−n + m − ε − ν35)Γ (n + m − ε − ν4)

Γ (−n + ν4)
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×Γ (−τ − n − m + ε + ν14)Γ (τ + n − m + ε + ν235)
Γ (τ + n + 2m − 2ε − ν14)

×Γ (τ + n + ν5),

H(2) =
Γ (−n − m + ε + ν35)Γ (n + 2m − 2ε − ν345)

Γ (−n − m + ε + ν345)

×Γ (−τ − n − 2m + 2ε + ν1345)Γ (τ + n + ν2)
Γ (τ + n + 3m − 3ε − ν1345)

×Γ (τ + n + m − ε − ν3),

H(3) =
Γ (n − 2m + 2ε + ν12345)Γ (n − m + ε + ν145)

Γ (n + m − ε)

×Γ (τ − n + m − ε − ν14)Γ (τ − n + 2m − 2ε − ν1345)
Γ (τ − n + m − ε − ν1)

×Γ (−τ + n + ν1). (31)

The procedure is then repeated by closing the τ -integration
contour to the right. For example, for the term T(1) we have
to evaluate the residues of Γ (−τ), Γ (−τ +m−ε−ν25) and
Γ (−τ −n−m+ε+ν14). The residues of Γ (τ +m−ε−ν1),
Γ (τ + n − m + ε + ν235) or Γ (τ + n + ν5) are always to
the left of the contour. In summary, the two-loop integral
can be written as the sum of the following terms:

Î(2,5) = T(1,1) + T(1,2) + T(1,3) + T(2,1) + T(2,2) + T(2,3)

+ T(3,1) + T(3,2) + T(3,3) + T(3,4) + T(3,5).

(32)

Table 1 shows the correspondence between each term T(k,l)
and the Gamma functions, from which the residues are
taken. The term T(3,3) corresponding to the residues in
Γ (−τ+n+ν1) gives no contribution. This Gamma function
is always accompanied by 1/Γ (−τ + ν1). Since

Γ (−τ + n + ν1)
Γ (−τ + ν1)

= (−τ + ν1 + n − 1)...(−τ + ν1)

(33)

Table 1. Correspondence between the terms T(k,l) and the
Gamma functions from which the residues are taken

σ τ

T(1,1) Γ (−σ) Γ (−τ)
T(1,2) Γ (−σ) Γ (−τ + m − ε − ν25)
T(1,3) Γ (−σ) Γ (−τ − n − m + ε + ν14)

T(2,1) Γ (−σ + m − ε − ν35) Γ (−τ)
T(2,2) Γ (−σ + m − ε − ν35) Γ (−τ + m − ε − ν25)
T(2,3) Γ (−σ + m − ε − ν35) Γ (−τ − n − 2m + 2ε + ν1345)

T(3,1) Γ (−σ − τ − m + ε + ν14) Γ (−τ)
T(3,2) Γ (−σ − τ − m + ε + ν14) Γ (−τ + m − ε − ν25)
T(3,3) Γ (−σ − τ − m + ε + ν14) Γ (−τ + n + ν1)
T(3,4) Γ (−σ − τ − m + ε + ν14) Γ (τ − n + m − ε − ν14)
T(3,5) Γ (−σ − τ − m + ε + ν14) Γ (τ − n + 2m − 2ε − ν1345)

is free of poles we have

T(3,3) = 0. (34)

Furthermore, we can show that the terms T(1,3) and T(3,4)
as well as the terms T(2,3) and T(3,5) cancel:

T(1,3) + T(3,4) = 0, T(2,3) + T(3,5) = 0. (35)

To present the results after all residues have been taken,
we introduce two functions G± with ten arguments each:

G±(a1, a2, a3, a4; b1, b2, b3; c1, c2, c3)

=
∞∑

n=0

∞∑
j=0

(−1)n+j

n!j!
(36)

×Γ (∓n − j − a1)Γ (±n + j + a2)Γ (±n + j + a3)
Γ (±n + j + a4)

×Γ (∓n ∓ b1)Γ (n + b2)
Γ (∓n ∓ b3)

Γ (−j − c1)Γ (j + c2)
Γ (−j − c3)

,

together with two operators Ld and Rd acting on the ar-
guments as follows:

LdG±(a1, a2, a3, a4; b1, b2, b3; c1, c2, c3)

= G±(a1 + d, a2 + d, a3 + d, a4 + d;

b1 + 2d, b2 + d, b3 + d; c1, c2, c3),

RdG±(a1, a2, a3, a4; b1, b2, b3; c1, c2, c3)

= G±(a1 + d, a2 + d, a3 + d, a4 + d;

b1, b2, b3; c1 + 2d, c2 + d, c3 + d). (37)

Then

Î(2,5) = c
(
1 + Lm−ε−ν35 + Rm−ε−ν25

+Lm−ε−ν35Rm−ε−ν25

)
×G+ (m − ε − ν14,−m + ε + ν235, ν5, 2m − 2ε − ν14;

−m + ε + ν35, m − ε − ν4,−ν4;

−m + ε + ν25, m − ε − ν1,−ν1)

+ c (1 + Rm−ε−ν25)

×G− (−ν1, m − ε − ν14, 2m − 2ε − ν1345, m − ε − ν1;

−2m + 2ε + ν12345,−m + ε + ν145, m − ε;

−m + ε + ν25, m − ε − ν1,−ν1) . (38)

Here, 1 denotes the identity operator with a trivial action
on the arguments of the functions G±. To proceed, we
now show how to transform the functions G± to a standard
form, such that they can be expanded in ε with algorithms
of [16,17]. Since the shift operators L and R modify only
the arguments but not the structure of the functions G±,
it is sufficient to discuss one example for each function. For
the function G+ we discuss as an example the first term
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(without any application of the shift operators L or R) of
(38), which corresponds to the term T(1,1):

T(1,1) = c G+(m − ε − ν14,−m + ε + ν235,

ν5, 2m − 2ε − ν14;

−m + ε + ν35, m − ε − ν4,−ν4;

−m + ε + ν25, m − ε − ν1,−ν1)

= c

∞∑
n=0

∞∑
j=0

(−1)(n+j)

n!j!

×Γ (−n − j − m + ε + ν14)Γ (n + j − m + ε + ν235)
Γ (n + j + 2m − 2ε − ν14)

×Γ (n + j + ν5)

×Γ (−n + m − ε − ν35)Γ (n + m − ε − ν4)
Γ (−n + ν4)

×Γ (−j + m − ε − ν25)Γ (j + m − ε − ν1)
Γ (−j + ν1)

. (39)

If ν1 and ν4 are not positive integers, one may use the
reflection formula

Γ (−n + x) = Γ (x)Γ (1 − x)
(−1)n

Γ (n + 1 − x)
(40)

to flip the Gamma functions, where a summation index
occurs with a negative sign. One obtains in that case

T(1,1) = cΓ (−m + ε + ν14)Γ (1 + m − ε − ν14)

×Γ (m − ε − ν35)Γ (1 − m + ε + ν35)
Γ (ν1)Γ (1 − ν1)Γ (ν4)Γ (1 − ν4)

×Γ (m − ε − ν25)Γ (1 − m + ε + ν25)

×
∞∑

n=0

∞∑
j=0

Γ (n + m − ε − ν4)Γ (n + 1 − ν4)
Γ (n + 1)Γ (n + 1 − m + ε + ν35)

×Γ (j + m − ε − ν1)Γ (j + 1 − ν1)
Γ (j + 1)Γ (j + 1 − m + ε + ν25)

(41)

× Γ (n + j − m + ε + ν235)
Γ (n + j + 2m − 2ε − ν14)

× Γ (n + j + ν5)
Γ (n + j + 1 + m − ε − ν14)

.

This is a double infinite sum with unit arguments and it
can be evaluated with algorithm B of [16,17]. The sum in
(41) is a generalization of the first Appell function. The
Laurent expansion to any fixed order will contain only
rational numbers and multiple zeta values. If ν1 or ν4 are
positive integers, the infinite sums over j or n terminate.
For example, if ν1 is a positive integer, while ν4 is not,
one obtains

T(1,1) = c
Γ (m − ε − ν35)Γ (1 − m + ε + ν35)

Γ (ν4)Γ (1 − ν4)

×Γ (−m + ε + ν14)Γ (1 + m − ε − ν14)

×
ν1−1∑
j=0

Γ (−j + m − ε − ν25)Γ (j + m − ε − ν1)
Γ (j + 1)Γ (−j + ν1)

×
∞∑

n=0

Γ (n + m − ε − ν4)Γ (n + 1 − ν4)
Γ (n + 1)Γ (n + 1 − m + ε + ν35)

(42)

× Γ (n + j − m + ε + ν235)
Γ (n + j + 2m − 2ε − ν14)

× Γ (n + j + ν5)
Γ (n + j + 1 + m − ε − ν14)

.

This is a finite sum of single infinite sums; more precisely, it
is a sum of ν1 terms, each containing a 4F3 hypergeometric
function with unit argument. These are evaluated with
algorithm A of [16, 17]. Again, the Laurent expansion to
any fixed order will contain only rational numbers and
multiple zeta values. The case where ν4 is a positive integer
while ν1 is not, is completely analog. If both ν1 and ν4 are
positive integers, one obtains

T(1,1) = c

ν4−1∑
n=0

ν1−1∑
j=0

(−1)(n+j)

n!j!
Γ (−n − j + ν14 − m + ε)
Γ (n + j + 2m − 2ε − ν14)

×Γ (n + j − m + ε + ν235)Γ (n + j + ν5)

×Γ (−n + m − ε − ν35)Γ (n + m − ε − ν4)
Γ (−n + ν4)

×Γ (−j + m − ε − ν25)Γ (j + m − ε − ν1)
Γ (−j + ν1)

, (43)

e.g. a finite sum of products of Gamma functions. This
is rather trivial and the Laurent expansion contains only
rational numbers and zeta values.

We now turn to the function G−. As an example we dis-
cuss

T(3,1) = cG−(−ν1, m − ε − ν14, 2m − 2ε − ν1345,

m − ε − ν1; −2m + 2ε + ν12345,

− m + ε + ν145, m − ε;

− m + ε + ν25, m − ε − ν1,−ν1)

= c

∞∑
n=0

∞∑
j=0

(−1)n+j

n!j!
Γ (n − 2m + 2ε + ν12345)

Γ (n + m − ε)

×Γ (n − m + ε + ν145)

×Γ (−j + m − ε − ν25)Γ (j + m − ε − ν1)
Γ (−j + ν1)

×Γ (−n + j + m − ε − ν14)
Γ (−n + j + m − ε − ν1)

×Γ (−n + j + 2m − 2ε − ν1345)

×Γ (n − j + ν1). (44)
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If ν1 is not a positive integer, we split the summation region
into the regions j ≤ n and n ≤ j and subtract the double
counted diagonal j = n as in

∞∑
n=0

∞∑
j=0

F (n, j) (45)

=
∞∑

n=0

n∑
j=0

F (n, j) +
∞∑

j=0

j∑
n=0

F (n, j) −
∞∑

n=0

F (n, n).

We obtain

T(3,1) = c Γ (m − ε − ν14)Γ (1 − m + ε + ν14)

× Γ (m − ε − ν25)Γ (1 − m + ε + ν25)
Γ (ν1)Γ (1 − ν1)Γ (m − ε − ν1)Γ (1 − m + ε + ν1)

×Γ (2m − 2ε − ν1345)Γ (1 − 2m + 2ε + ν1345)

×
∞∑

n=0

∞∑
j=0

Γ (n + ν1)
Γ (n + 1 − m + ε + ν14)

× Γ (n + 1 − m + ε + ν1)
Γ (n + 1 − 2m + 2ε + ν1345)

×Γ (j + m − ε − ν1)Γ (j + 1 − ν1)
Γ (j + 1)Γ (j + 1 − m + ε + ν25)

×Γ (n + j − m + ε + ν145)Γ (n + j − 2m + 2ε + ν12345)
Γ (n + j + 1)Γ (n + j + m − ε)

+ c Γ (m − ε − ν25)Γ (1 − m + ε + ν25)

×
∞∑

n=0

∞∑
j=0

Γ (n + m − ε − ν14)Γ (n + 2m − 2ε − ν1345)
Γ (n + 1 − ν1)Γ (n + m − ε − ν1)

×Γ (j − m + ε + ν145)Γ (j − 2m + 2ε + ν12345)
Γ (j + 1)Γ (j + m − ε)

×Γ (n + j + m − ε − ν1)Γ (n + j + 1 − ν1)
Γ (n + j + 1)Γ (n + j + 1 − m + ε + ν25)

− c
Γ (m − ε − ν25)Γ (1 − m + ε + ν25)

Γ (1 − ν1)Γ (m − ε − ν1)

×Γ (m − ε − ν14)Γ (2m − 2ε − ν1345)

×
∞∑

n=0

Γ (n + m − ε − ν1)Γ (n − m + ε + ν145)
Γ (n + 1)Γ (n + 1)Γ (n + m − ε)

×Γ (n − 2m + 2ε + ν12345)Γ (n + 1 − ν1)
Γ (n + 1 − m + ε + ν25)

. (46)

The sums are of the same type as discussed in (41) and (42);
therefore, the Laurent expansion contains only rational
numbers and multiple zeta values.

If ν1 is a positive integer, we observe that in (44) we
have the building block

Γ (n − j + ν1)
Γ (−j + ν1)

= (ν1 − j)(ν1 − j + 1)...(ν1 − j + n − 1). (47)

Therefore we obtain a non-vanishing contribution only if
this sequence does not contain zero. This is the case for

Region I: j < ν1,

Region II: j > n + ν1 − 1. (48)

Region I contains only a finite number of residues from
Γ (−τ), whereas region II contains an infinite sum. We
obtain

T(3,1) = c (−1)ν1Γ (m − ε − ν125)Γ (1 − m + ε + ν125)

×
∞∑

n=0

∞∑
j=0

Γ (n + m − ε − ν4)Γ (n + 2m − 2ε − ν345)
Γ (n + 1)Γ (n + m − ε)

×Γ (j − m + ε + ν145)Γ (j − 2m + 2ε + ν12345)
Γ (j + 1)Γ (j + m − ε)

× Γ (n + j + 1)Γ (n + j + m − ε)
Γ (n + j + 1 + ν1)Γ (n + j + 1 − m + ε + ν125)

+ c
Γ (m − ε − ν14)Γ (1 − m + ε + ν14)
Γ (m − ε − ν1)Γ (1 − m + ε + ν1)

×Γ (2m − 2ε − ν1345)Γ (1 − 2m + 2ε + ν1345)

×
ν1−1∑
j=0

Γ (−j + m − ε − ν25)Γ (j + m − ε − ν1)
Γ (j + 1)Γ (−j + ν1)

×
∞∑

n=0

Γ (n − m + ε + ν145)Γ (n − 2m + 2ε + ν12345)
Γ (n + 1)Γ (n + m − ε)

× Γ (n − j + ν1)
Γ (n − j + 1 − m + ε + ν14)

× Γ (n − j + 1 − m + ε + ν1)
Γ (n − j + 1 − 2m + 2ε + ν1345)

. (49)

Once again, the sums are of the same type as discussed
in (41) and (42), and the Laurent expansion contains only
rational numbers and multiple zeta values.

To summarize, we are able to write the two-loop in-
tegral Î(2,5) as a combination of terms, which can be ex-
panded in ε to arbitrary order with the help of algorithms
A and B of [16,17]. All these terms occur with unit argu-
ments; therefore, the Laurent expansion of Î(2,5) involves
only rational numbers and multiple zeta values. In particu-
lar, in the representation derived here, no alternating Euler
sums occur. This answers the question raised recently by
Broadhurst [11].

Theorem. Multiple zeta values are sufficient for the Lau-
rent expansion of the two-loop integral Î(2,5)(m−ε, ν1, ν2, ν3,
ν4, ν5), if all powers of the propagators are of the form
νj = nj + ajε, where the nj are positive integers and the
aj are non-negative real numbers.

We have shown above that the Laurent expansion of
the two-loop integral Î(2,5) can be expressed in multiple
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zeta values if the inequalities (27) are satisfied. These in-
equalities ensure that the semi-circles at infinity give a van-
ishing contribution. If for a specific combination of powers
of propagators these inequalities are not satisfied, one may
use the integration-by-part identities (4) and the symmetry
relations (5) and (9)–(11) to express the original integral as
a linear combination of integrals, which fulfill the inequal-
ities. The coefficients of this linear combination are either
rational numbers or Gamma functions, which in turn ex-
pand into zeta values. Therefore the theorem holds also in
the general case.

The restriction to aj ≥ 0 in the parameterization νj =
nj + ajε ensures that the different cases we treated above
(e.g. the argument of a Gamma function being an integer
or not) are sufficient. This condition could be relaxed at
the expense of a more extensive case study. However, in
all practical calculations the integrals occur with aj ≥ 0.

Finally we remark on a technical detail. Our method
of calculation expresses the two-loop integral as a com-
bination of several sums with unit arguments. Although
the final result is finite, it is not guaranteed that all indi-
vidual sums are convergent. Furthermore, the algorithms
used for the Laurent expansion rely on partial fractioning.
This may split a convergent sum into two divergent pieces,
as illustrated by the example of the convergent sum

∞∑
n=1

1
n(n + 1)

= 1. (50)

Partial fractioning splits

1
n(n + 1)

=
1
n

− 1
n + 1

. (51)

The problem is easily circumvented by introducing a finite
upper summation limit N or by multiplying the summand
by xn and taking the limit x → 1 in the end. With both
methods, the divergent pieces cancel at the end of the day
and one obtains the correct and finite result. Within the
second method, one inserts

xσ
1 xτ

2 (52)

into the integrand of (25). Then all sums are convergent,
provided 0 ≤ x1 < 1, 0 ≤ x2 < 1 and x2 < x1. The
Laurent expansion for this more general expression will
contain multiple polylogarithms in x1 and x2. The result
for the two-loop integral Î(2,5) is recovered by first taking
the limit x1 → 1 and then the limit x2 → 1. Note that the
order of the limits cannot be exchanged. It is easily seen
that in the limits the multiple polylogarithms reduce to
multiple zeta values.

5 Results, checks and performance

We have implemented the results of the previous section in
a C++ program, which calculates symbolically the Laurent
expansion of the two-loop integral for a user-specified set
of parameters (m, ν1, ..., ν5) up to the desired order in ε.

The program uses the “nestedsums”-library [17] and the
“GiNaC”-library [26]. To simplify our results we use the
Gröbner basis for multiple zeta values provided in [30].

To check our implementation we have written two in-
dependent programs and verified that they agree. Further-
more, we have checked that for trivial cases (e.g. all powers
of the propagators integers) we obtain the correct (known)
result. In addition, we have verified the symmetry rela-
tions (5). Finally we compared for non-integer powers of
the propagators with known results from the literature. As
an example we quote the result for one particular integral:

(1 − 2ε) Î(2,5)(2 − ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε, 1 + ε)

= 6ζ3 + 9ζ4ε + 372ζ5ε
2 +

(
915ζ6 − 864ζ2

3
)
ε3

+ (18450ζ7 − 2592ζ4ζ3) ε4

+ (50259ζ8 − 76680ζ5ζ3 − 2592ζ6,2) ε5

+ (905368ζ9 − 200340ζ6ζ3 − 130572ζ5ζ4

+ 66384ζ3
3
)
ε6

+ (2955330ζ10 − 68688ζ8,2 − 3659904ζ7ζ3 (53)

−1777680ζ2
5 +298728ζ4ζ

2
3
)
ε7 + O(ε8).

For multiple zeta values we use the notation

ζm1,m2 =
∞∑

n1>n2>0

1
nm1

1

1
nm2

2
. (54)

We have compared our result up to weight 10 with [10]
and found agreement. The order to which we can ex-
pand the two-loop integral in the parameter ε is not lim-
ited by our method of calculation. The only restriction
arises from hardware constraints (e.g. available memory
and CPU time). Table 2 shows for the case of the integral
Î(2,5)(2−ε, 1+ε, 1+ε, 1+ε, 1+ε, 1+ε) the dependence of
the required CPU time and the required memory on the
order of ε to which the Laurent expansion is calculated.
In Table 2 we also indicate the highest weight of multiple
zeta values which occur within a given order. Note that
the weight is a more accurate measure of the complexity
of a calculation, since in the example discussed here indi-
vidual terms start at 1/ε3, but in the sum the coefficients
of the terms 1/ε3, 1/ε2 and 1/ε vanish. In general we ex-
pect terms up to weight 2l − 1 to occur in the finite part
of a l-loop two-point function. We see from Table 2 that

Table 2. CPU time in seconds and required memory in MB
for the expansion of Î(2,5)(2−ε, 1+ε, 1+ε, 1+ε, 1+ε, 1+ε) up
to the indicated order/weight on a PC (1.6 GHz Athlon with
2 GB RAM)

O(ε) 0 1 2 3 4 5 6 7
weight 3 4 5 6 7 8 9 10

time 29 54 99 185 375 910 2997 11741
memory 6 7 8 12 30 104 397 1970
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up to weight 8 our implementation is rather efficient. For
higher weights the main limitation is given by the available
memory. However, as far as practical applications are con-
cerned, weight 7 is sufficient to extend the existing O(α3

s )
calculation [31,32] for e+e− → hadrons to order α4

s . Here
one would need the following integrals:

(1 − 2ε) Î(2,5)(2 − ε, 1 + 2ε, 1, 1, 1, 1)

= 6ζ3 + 9ζ4ε + 142ζ5ε
2 +

(
340ζ6 − 158ζ2

3
)
ε3

+ (3034ζ7 − 474ζ4ζ3) ε4 +
(

36099
4

ζ8 − 6172ζ5ζ3

)
ε5

+
(

193010
3

ζ9 − 9258ζ5ζ4 − 14640ζ6ζ3 +
6748

3
ζ3
3

)
ε6

+O(ε7),

(1 − 2ε) Î(2,5)(2 − ε, 1, 1, 1, 1, 1 + 2ε)

= 6ζ3 + 9ζ4ε + 192ζ5ε
2 +

(
465ζ6 − 168ζ2

3
)
ε3

+ (4509ζ7 − 504ζ4ζ3) ε4

+
(

16377
2

ζ8 − 1620ζ6,2 − 3252ζ5ζ3

)
ε5

+
(
98490ζ9 − 14598ζ5ζ4 − 15390ζ6ζ3 + 2676ζ3

3
)
ε6

+O(ε7),

(1 − 2ε) Î(2,5)(2 − ε, 1 + ε, 1 + ε, 1, 1, 1)

= 6ζ3 + 9ζ4ε + 132ζ5ε
2 +

(
315ζ6 − 144ζ2

3
)
ε3

+ (2634ζ7 − 432ζ4ζ3) ε4 + (7749ζ8 − 5256ζ5ζ3) ε5

+
(
53160ζ9 − 12420ζ6ζ3 − 7884ζ5ζ4 + 1872ζ3

3
)
ε6

+O(ε7),

(1 − 2ε) Î(2,5)(2 − ε, 1 + ε, 1, 1 + ε, 1, 1)

= 6ζ3 + 9ζ4ε + 127ζ5ε
2 +

(
605
2

ζ6 − 173ζ2
3

)
ε3

+
(

18989
8

ζ7 − 519ζ4ζ3

)
ε4

+
(

102243
16

ζ8 − 243
2

ζ6,2 − 5839ζ5ζ3

)
ε5

+
(

1084927
24

ζ9 − 14340ζ6ζ3 − 18975
2

ζ5ζ4

+
8554

3
ζ3
3

)
ε6 + O(ε7),

(1 − 2ε) Î(2,5)(2 − ε, 1 + ε, 1, 1, 1 + ε, 1)

= 6ζ3 + 9ζ4ε + 132ζ5ε
2 +

(
315ζ6 − 204ζ2

3
)
ε3

+ (2634ζ7 − 612ζ4ζ3) ε4 +
(

15183
2

ζ8 − 7476ζ5ζ3

)
ε5

+
(
53160ζ9 − 17670ζ6ζ3 − 11214ζ5ζ4 + 3612ζ3

3
)
ε6

+O(ε7),

(1 − 2ε) Î(2,5)(2 − ε, 1 + ε, 1, 1, 1, 1 + ε)

= 6ζ3 + 9ζ4ε + 157ζ5ε
2 +

(
755
2

ζ6 − 179ζ2
3

)
ε3

+
(

26657
8

ζ7 − 537ζ4ζ3

)
ε4

+
(

124899
16

ζ8 − 1215
2

ζ6,2 − 5521ζ5ζ3

)
ε5

+
(

1657525
24

ζ9 − 15945ζ6ζ3 − 23853
2

ζ5ζ4

+
8776

3
ζ3
3

)
ε6 + O(ε7). (55)

These integrals are in principle only needed up to order ε4

for the α4
s corrections. However, knowing these integrals to

higher orders can simplify integral reduction algorithms.
For example, one may allow spurious poles in integration-
by-parts identities. The CPU time and the required mem-
ory needed to calculate each of these integrals is slightly
below the corresponding numbers indicated in Table 2.

6 Summary and conclusions

In this paper we calculated the ε-expansion of the massless
master two-loop two-point function with arbitrary powers
of the propagators. We showed that to all orders in ε ra-
tional numbers and multiple zeta values are sufficient to
express the result. Our method of calculation obtained the
two-loop integral from a convolution of two one-loop inte-
grals. We also discussed the corresponding factorization for
three-loop two-point functions. Finally we demonstrated
that our method can be implemented efficiently on a com-
puter.
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A Integral transformations

In this appendix we briefly summarize the Laplace, Mellin
and Fourier integral transformations. Let f(t) be a function
which is bounded by an exponential function for t → ±∞,
e.g.

|f(t)| ≤ Kec0t for t → ∞,

|f(t)| ≤ K ′e−c1t for t → −∞. (56)
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Then the (double-sided) Laplace transform is defined for
c0 < Re σ < c1 by

fL(σ) =

∞∫
−∞

dt f(t) e−σt. (57)

The inverse Laplace transform is given by

f(t) =
1

2πi

γ+i∞∫
γ−i∞

dσ fL(σ) eσt. (58)

The integration contour is parallel to the imaginary axis
and c0 < Re γ < c1.

Let h(x) be a function which is bounded by a power
law for x → 0 and x → ∞, e.g.

|h(x)| ≤ Kx−c0 for x → 0,

|h(x)| ≤ K ′xc1 for x → ∞. (59)

Then the Mellin transform is defined for c0 < Re σ < c1
by

hM(σ) =

∞∫
0

dx h(x) xσ−1. (60)

The inverse Mellin transform is given by

h(x) =
1

2πi

γ+i∞∫
γ−i∞

dσ hM(σ) x−σ. (61)

The integration contour is parallel to the imaginary axis
and c0 < Re γ < c1. There is a close relation between the
Laplace and the Mellin transform: If f(t) = h(e−t), then
fL(σ) = hM(σ). Note that the inversion formulas can be
obtained from the known inversion formula for the Fourier
transform. To a function f(t) we associate the Fourier
transform

fF (u) =

∞∫
−∞

dt f(t) e−2πiut. (62)

The inverse transform is given by

f(t) =

∞∫
−∞

du fF (u) e2πiut. (63)

The Laplace transform and the Fourier transform of a
function f(t) are related by

fL (σ) = fF
( σ

2πi

)
. (64)

As an example for the Mellin transform we consider the
function

h(x) =
xc

(1 + x)c
(65)

with Mellin transform hM(σ) = Γ (−σ)Γ (σ+c)/Γ (c). For
Re(−c) < Re γ < 0 we have

xc

(1 + x)c
=

1
2πi

γ+i∞∫
γ−i∞

dσ
Γ (−σ)Γ (σ + c)

Γ (c)
x−σ. (66)

From (66) one obtains with x = B/A the Mellin–Barnes
formula

(A + B)−c =
1

2πi

γ+i∞∫
γ−i∞

dσ
Γ (−σ)Γ (σ + c)

Γ (c)
AσB−σ−c.

(67)
We often deal with integrals of the form

I =
1

2πi

γ+i∞∫
γ−i∞

dσ

×Γ (σ + a1)...Γ (σ + am)
Γ (σ + c2)...Γ (σ + cp)

Γ (−σ + b1)...Γ (−σ + bn)
Γ (−σ + d1)...Γ (−σ + dq)

×x−σ. (68)

If max (Re(−a1), ...,Re(−am)) < min (Re(b1), ...,Re(bn))
the contour can be chosen as a straight line parallel to the
imaginary axis with

max (Re(−a1), ...,Re(−am))

< Reγ < min (Re(b1), ...,Re(bn)) , (69)

otherwise the contour is indented, such that the residues
of Γ (σ +a1), ..., Γ (σ +am) are to the right of the contour,
whereas the residues of Γ (−σ + b1), ..., Γ (−σ + bn) are to
the left of the contour. We further set

α = m + n − p − q,

β = m − n − p + q,

λ = Re


 m∑

j=1

aj +
n∑

j=1

bj −
p∑

j=1

cj −
q∑

j=1

dj




− 1
2

(m + n − p − q) . (70)

Then the integral (68) converges absolutely for α > 0 [33]
and defines an analytic function in

|arg x| < min
(

π, α
π
2

)
. (71)

The integral (68) is most conveniently evaluated with the
help of the residue theorem by closing the contour to the
left or to the right. Therefore we need to know under which
conditions the semi-circle at infinity used to close the con-
tour gives a vanishing contribution. This is obviously the
case for |x| < 1 if we close the contour to the left, and
for |x| > 1, if we close the contour to the right. The case
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|x| = 1 deserves some special attention. One can show
that in the case β = 0 the semi-circle gives a vanishing
contribution, provided

λ < −1. (72)

To derive this result, Barnes’ asymptotic expansion of the
Gamma function for large x is useful:

lnΓ (x + c) ∼ (x + c) lnx − x − 1
2

ln
x

2π

−
∞∑

n=1

Bn+1(c)
n(n + 1)

(
− 1

x

)n

, (73)

where the Bernoulli polynomials Bn(x) are given in terms
of the Bernoulli numbers Bj by

Bn(x) =
n∑

j=0

(
n

j

)
Bj xn−j . (74)
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